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1.  I n t r o d u c t i o n  

There has long been interest in finding solutions of  string theory which - in the large 

scale limit - go over to the familiar instanton solutions of  Yang-Mills field theory. An 

argument using supersymmetry shows that any field theoretic instanton solution can be 

systematically corrected, by adding terms of  higher and higher order in od, to get a 

string theoretic solution [ 1 ]. 
This perturbative approach can be made particularly explicit for those solutions that 

have a simple description in field theory. For instance, if the gauge group is SU(2) ,  

then an instanton of  topological charge k depends on 8k - 3 parameters (or 8k if one 

includes the global SU(2)  rotations). A sub-family depending on 5k + 4 parameters can 
be described by a particularly nice ansatz introduced by 't  Hooft, while to describe the 
full 8k - 3 parameter family requires the more sophisticated ADHM construction [2] .  

(The ADHM construction was originally obtained using twistor space and algebraic 
geometry, but can be derived and explained in terms of  differential geometry of  ]I~ 4 

[3] . )  At least to first order in a ', the ' t  Hooft ansatz fits nicely with string theory - 
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it has an elegant extension [4,5] that obeys the low energy equations derived from the 

heterotic string. On the other hand, the special properties of  the ADHM construction 

have not yet been exploited in any stringy way. That will be done in the present paper. 

The solutions of  string theory corresponding to instantons should be conformal field 

theories with (0 ,4 )  supersymmetry, since in the field theory limit (that is the limit of  

a large scale instanton or equivalently or' ~ 0),  self-duality of  the gauge field is the 

condition for (0, 4) supersymmetry. Conformal field theories often arise as the infrared 

limit o f  theories that are not conformally invariant; a simple linear field theory can flow 

in the infrared to a very subtle nonlinear model. For instance, this point of  view has 

been applied to Calabi-Yau models [6,7]. To study instantons in this way, we should 

consider linear sigma models with (0, 4) supersymmetry. The mass terms and potentials 

in such a model violate conformal invariance at the classical level; (0, 4) models with 

such interactions have been studied before [8] ,  but we will here need a slightly new 

twist. 

The conclusion we get can be stated as follows: in the right context, with the right 

multiplets, the condition that a (0, 1) model should have (0 ,4 )  supersymmetry is that 

the Yukawa couplings should obey the ADHM equations! Thus, for every instanton - 

that is, every solution of  the ADHM equations - we get a (0, 4) sigma model that 

should flow in the infrared to the solution of  string theory corresponding to the given 

instanton. 

This gives a uniform treatment of  all instantons in string theory, and I believe that, 

at least to physicists, it will put the ADHM construction on more familiar grounds. 1 

Moreover, it may enable one to get some information about the behavior in string theory 

as an instanton shrinks to zero size; we comment on this issue in Section 3. This may be 

helpful in understanding issues of  H-monopoles and S-duality ] 9,10]. Also the treatment 

of  instantons via linear sigma models probably carries over to other manifolds, such as 

ALE spaces, on which there is a version of  the ADHM construction [ 11 ]. 

2. Construct ion  o f  the m o d e l  

2.1. Supersymmetries and multiplets 

We work in two dimensional Minkowski space with coordinates ~-, tr and light cone 
variables o -:~ = (~-q-tr)/x/~; the world-sheet metric is ds 2 = d~ "2-  do -2. We are interested 

in models with (0, 4) supersymmetry. This means that there are four real right-moving 

supercharges. On the space of  four real supercharges one could assume a symmetry 

group SO(4)  ~ SU(2)  x SU(2) .  However, the usual N = 4 superconformal algebra, 

to which the theories we formulate should flow in the infrared, contains only a single 

l However, while the relation to (0, 4) supersymmetry makes it obvious that the gauge fields coming from 
the ADHM construction are self-dual, it does not necessarily shed light on the harder part of the ADHM 
construction, which is to show that all instantons arise from this construction. That question is simply 
reinterpreted as the statement that all instantons arise from linear sigma models. 
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SU(2) factor. We will call the two SU(2) ' s  F and F t. Much of the formalism is invariant 

under F x F ,  but the eventual Lagrangians will be only F- invar iant .  

We write the four supersymmetries as QAA' ,  A, A t = 1,2. Indices A, B, C = !, 2 will 

transform as a doublet under F,  and indices A t, B t, C '  = 1,2 will transform as a doublet 

under F t . The supercharges are real in the sense that 

QAA'  rAB~A'B'r '~t  
= e  e ~BB'' (2.1) 

where EAB and CA,B, are the antisymmetric tensors of the two SU(2) ' s .  The supersym- 

metry algebra is to be 

{ o a a ' ,  Q B B ' }  = EAB E A ' B ' p + ,  (2.2) 

where P+ = P_ = -iO/ao'- is the generator of translations of o--.  

Consider a multiplet containing bosons and fermions related by the Q's. The multiplet 

usually considered in conformal field theory (assuming that the eventual Lagrangian is 

to be F'- invariant  and not F invariant) is one in which the bosons transform as ( I /2 ,  0) 

under F × F t. 2 We will, however, also need a multiplet in which the bosons transform as 

(0, 1 /2) .  We will refer to the two types of multiplets as standard and twisted multiplets, 

respectively. Other multiplets have been found recently [12]. 

First, we write down the structure of the standard multiplet. (We will work in com- 

ponents, as I do not know how to describe these models in superspace.) There is a bose 

field X At, A, Y = 1,2, with a reality condition analogous to (2.1): 

X AY -~ e A B e r Z ' X B z .  (2.3) 

This multiplet admits the action of yet another SU(2) group H (which will generally not 

be a symmetry of the theories that we eventually consider). F acts on indices A, B, C 

and H on the indices Y,Z; the X's thus transform as ( 1 / 2 , 0 ,  1/2) under F × F t × H. X 

is related by supersymmetry to a right-moving 3 fermi field ¢,A'Y with a reality condition 

of the same form as (2.3).  The supersymmetry transformation laws are 

t~xAY • , , AA'- -B 'Y A'Y A A ~  vBY = teA B 71+ q.t_ , t~O = eAB71 + O _ A  , (2.4) 

where 71AA' are infinitesimal parameters. It is easy to check the commutation relations 

t t t 

[ ~71, ' ~71 ] • aa BB =-- lEABEA,B,71 + 71 + tg_. (2.5) 

If one wishes to consider k such multiplets, one simply extends the Y index to run from 

1 . . . . .  2k; the group H becomes the symplectic group Sp(k) instead of SU(2) ~ Sp( 1 ), 
and the tensor e rz in (2.3) should be understood as the invariant antisymmetric tensor 

of Sp(k).  

2 The reason for this is that, in a conformal (0,4) theory, if F 1 is the only global symmetry, as is usually 
the case, it must be carried only by right-moving modes, but the bosons have also a left-moving part. In the 
models we consider below, the bosons that are not Fr-invadant are massive and irrelevant in the infrared. 

3 ~O_ is right-moving in the sense that the equation of motion of the free ~_ field would be 0+if_ = 0, so 
in the free theory ¢,_ is right-moving. A similar statement holds for what we will later call left-moving fields. 
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The structure of the twisted multiplet is the same, except that the roles of F and U 
are reversed• Thus, there is a bose field &a'r', A t, y~ = 1,2 with a reality condition like 

that in (2.3): 

~)AtY '  = EA'B'eY'Z'-~B,Z,. (2.6) 

The A t index transforms as a doublet of U ,  and Y~ is acted on by a new SU(2) group 

H ~. In addition, there is a right-moving fermi multiplet XA__ r' (an F '  singlet, as the 

notation indicates), obeying a reality condition like that in (2.6). The transformation 

laws are obtained from (2•4) with obvious substitutions: 

(~A'Y' ie AA'  BY'  ' t , A A ' ~  I B ' Y '  = AB77+ X -  , ~ X  A-Y = EA  B 77+ a _ ~ 9  . (2.7) 

The commutation relations of (2.5) are of course obeyed. For U such multiplets, one 
must take H t to be Sp(U) ,  take Yt to run from 1 . . . . .  2U and interpret the tensor e r'z' 
in the reality condition as the invariant antisymmetric tensor of Sp(U) .  

Of course, until we start writing Lagrangians, there is no essential difference between 

F and U ,  and the two multiplets are on the same footing. They become distinguished 
once we construct Lagrangians that are invariant under F ~ and not F. 

2•2. Left-moving fermions 

Now we introduce left-moving fermions A~_, a = 1 . . . . .  n. The part of the Lagrangian 

containing A~_ is of the general form 

I a a / d2o. ( ~  A+0_.,~+ iAa G o - -~ + a o p - j  , (2.8) 

where the components of p_ include all the right-moving fermions ~O, X, and Gao is 
some unknown function of X and ¢ incorporating masses and Yukawa couplings. The 

equations of motion of the A's are thus 

O_Aa+ = G~p°_. (2.9) 

Since I do not know how to treat the a ' s  as a (0,4)  superfield, we will have 

to study the supersymmetry transformations on-shell and by hand. The most general 
supersymmetry transformation allowed for the A's by dimensional analysis is 

6 t~ aq_ A A ' ~ a 
= 77+ I ~ A A , ,  (2.10) 

with C a function of X, ¢. Calculating the second variation, we get 

a { O C ~ A t  , B B ' , C ' Y  O C ~ A '  _ _ t B B ' .  C Y ' ~  ~5~,SnA + =i77a+ A' ~a-~-~eB,C,77 + gt_ + ~ e B C ' q  + 2( ) "  (2.11) 

We want to compare this to the expected result 

a ' t t AA t t B B t 3  l a  
(8r1'8~7 - -  6 .q6rl '  ) 4 +  = - - l e  A B E'AB77+ 77 + o--.'1.+ 

• t t AAt  t B B ~ " a  0 = --tEaBea B 77+ 77 + OOP . (2.12) 
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The condition for (2.1 1 ) to be of the form (2.12) - for a suitable G - is simply that 

3C~A, OC~A, t~C~A, 0C~4 B, 
0 =  ox'BY q- OXAY = cg~)B,y, -4-oCA,yt.  (2.13) 

If  this is so, then (2.11) and (2.12) agree with 

1 (eBDOC~B, dtB, Y B'O' OC~B' BY')  G t= \ ) (2.14) 

In (2.10) and (2.13), we have obtained a considerable amount of information about 
the supersymmetry transformation law of A. But is there actually a Lagrangian that is 
invariant under this symmetry? To answer this question, it is useful to compare to (0, 1 ) 

supersymmetry, where there is a superspace formulation. In that case, A is part of a 
multiplet A a = h a + OF a, where F is an auxiliary field that eventually (by equations 

of motion) becomes a function of the other bosons. The supersymmetry transformation 

law of A is 

8A a = 77 Fa (2.15 ) 

and the potential energy of the theory is 

1 
V = ~ ~ F a F  a. (2.16) 

a 

Comparing (2.15) to (2.10), it is clear that F corresponds to a component of C. If 
we pick any real c-number C AA', normalized so 

AA' BB ~ eaBea,B,c  c = 1, (2.17) 

then we can make a (0, 1) supersymmetric model in which the transformation laws 

of ,~ are the ones given above specialized to 77AA' = 77cAA ', 77 being an anticommuting 

parameter of (0, 1) supersymmetry. The potential of this theory will be 

1 ~ c a c  a (2.18) V= 2 
(1 

where 

C a = cAA'C~A , " (2.19) 

To get (0, 1) supersymmetry with the transformation laws in (2.10), we need the 

potential in (2.18) to be independent of c, ensuring that the same Lagrangian is invariant 

under all four supersymmetries. The condition for this is that 

0 = Z (C~AtC~B' "~ C~AtC~B')" (2.20) 
a 

We now have enough information to determine what the (0,4)  Lagrangian is, if 
there is one. The Yukawa couplings are given in (2.8) and the potential in (2.18). The 

Lagrangian is therefore 
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i f d2o.A+ (_no ?C~B, .,.s'r _B'o' OCJB, . Br"~ L = L k i , - ~  \e  O--X--~-qJ_ +e O---~-7FX_ j 

1 j - 2  AB A'8',~a --a (2.21) 8 a oE E ¢~AA,I....BBI , 

where Lkin is the free kinetic energy for all fields. (0, 4) supersymmetry does hold when 
(2.13) and (2.20) are valid since (2.20) insures that the Lagrangian is invariant under 
all the supersymmetries and (2.13) ensures that these generate the global (0, 4) algebra. 

2.3. The ADHM equations 

Now let us make the meaning of (2.13) and (2.20) more explicit. (2.13) can be 
solved quite explicitly; the general solution (raising and lowering indices with the e 

symbols) is 

C~A, = MaAA , + XAyNaA Y + ¢~A, U DaAy, + XAY ~A,Y'E~y, , (2.22) 

where M, N, D, and E are independent of X and ~b. Since C thus contains only terms at 
most bilinear in X and ~b, the potential V ~ C z at most contains terms of degree (2, 2). 

It is straightforward now to impose Eqs. (2.20), giving a finite system of equations 

for the finite set of coefficients in M, N, D, E. However, to imitate as much as possible 
the structure of superconformal (0, 4) theories, we want to impose invariance under F '  

(or F) .  F ~ invariance simply means that M = N = 0, since MaAA , and N,~, v transform as 
doublets of F ~ (which acts on the A ~ subscript). Thus in the F ~ invariant case, we can 
succinctly write 

C~A, = BaAy, q~a 'Y', (2.23) 

where B is linear in X (and independent of ~b). Eq. (2.20) can then be conveniently 
written 

(B~Av, B~z , + B~r,B~Az ,) =0.  (2.24) 

Thus, the U-invariant (0, 4) theories are simply determined by a tensor B, linear in X, 
and obeying (2.24). Of course, it may also be interesting to study the theories that arise 
if one does not assume either F or F ~ invariance. 

Now let us discuss the physical significance of this model. Since C is homogeneous 
and linear in ~b, the potential V is homogeneous and quadratic in ~b; in particular, it 
vanishes at ~b = 0, for any X. Therefore, the X's are massless fields, but the ~b's are 
massive; indeed, being quadratic in ~b, V can be interpreted as an X-dependent mass 
term for the q~'s. If  the number n of components of a is big enough and the solution B 
of (2.24) is sufficiently generic, then for every value of X, all of the ~b's are massive. 
(From what we will presently say, that this generically happens follows from standard 
theorems about the ADHM construction.) So the massless particles are precisely the 
X's, and the space of vacua is .M = ~4k, parametrized by the X's. (We recall that k and 
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k' are the numbers of X and ~b multiplets.) At the classical level, the metric on .A4 is 

read off from the classical Lagrangian after setting the ~b's to zero, and (assuming that 

we started with the free kinetic energy for all fields), it is just the flat metric on IR 4k. 
Of course, the (0, 4) supersymmetry endows .M with a hyper-Kahler structure. 

What about the fermions? On AA, that is, at 4~ = 0, the structure of the Yukawa 
couplings is particularly simple; it reduces to 

Z --a ~ a  AY' 
A + l ~ a y ,  X _  . ( 2 . 2 5 )  

a 

Thus, the fermionic partners ~9_ of X are all massless, as one would expect from 

(0, 4) supersymmetry. If  the number n of components of a~_ is bigger than the number 
4k' of components of xA_ r ' ,  then generically all components of X -  get mass (in fact, 

by supersymmetry this is true precisely when all components of & are massive), and 

N = n - 4kt components of A+ are massless. 

Let Ui a, i = 1 . . . . .  N ,  be a basis of the massless components of A+, that is the 

solutions of x-" caB~ = 0. Choose the v's to be orthonormal, that is ~-~a uiauj  a = ~ij .  Z.~a i AW 

Of course, the v] are X-dependent, as the tensor B is X-dependent (in fact, linear in 
X). Orthonormality determines v~ up to an X-dependent S O ( N )  transformation on the 

i index; this will be interpreted presently as the gauge invariance of the low energy 

theory. One can set to zero the massive modes in A+ by writing 

N 

aa+ = . ; a + , ,  
i=1 

(2.26) 

where a+i are the massless left-moving fermions. 
To write, at the classical level, the effective action for the massless modes, one sets 

to zero the massive fields ~b, X, and makes the ansatz (2.26) for A+. In particular, the 

kinetic energy for A+ becomes 

i /d2c r ~ (ua/~+i) O_(ujl~+j) 
-2 . .  

I , J ,a  

:~S. O_ Z i  2 {j+i (~,jO_ +._xBB'ABB, ij) ~+j). 
i,j 

(2.27) 

with 

%' 
A B s '  ij = Z va aXBB' " 

a 

(2.28) 

(2.27) is the standard sigma model expression for couplings of left-moving fermions to 

space-time gauge fields, the gauge field being given in (2.28). 
(0, 4) supersymmetry means that the gauge field in (2.28) must be compatible with 

the hyper-K~ihler structure of ~;~4k (that is, its curvature is of type (1 ,1)  for each of 
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the complex structures). For k = 1, this reduces to a more familiar statement: the gauge 
field is an instanton; its curvature is anti-self-dual. 

In fact, for k = 1, what we have just obtained is simply the ADHM construction of 
instantons. According to the ADHM construction, an instanton of SO(N), with instanton 

number k', is given by a tensor B, linear in X, that obeys (2.24), and has a further 
non-degeneracy condition which simply asserts that the components of & are all massive 
for all X. Moreover, (2.28) is the standard ADHM formula for the gauge field, in terms 
of B. The definition of the gauge field is actually perhaps better explained without 

formulas; the bundle E of massless fermions is a subbundle of the trivial bundle E0 of 

all fermions ~_, and the gauge connection on E is the connection on E induced from 

the trivial connection on E0. In formulas, that corresponds to (2.28). 
The ADHM theorem further asserts that two instantons are equivalent if and only if 

the two B tensors can be mapped into each other by the action of SO(n) x Sp(k') 
(which comes from the linear action of this group on the a and Y' indices of ,~+" and 
4)A'Y' ) . 

The ADHM construction gives rise to a partial compactification of instanton moduli 

space in which one drops the non-degeneracy condition and permits instantons for which 

4~ is massless at some values of X; this corresponds to allowing some instantons to shrink 
to zero size. One wonders if this compactification is relevant to string theory, especially 
since linear sigma models have a good record of predicting correctly the moduli spaces 

of conformal field theories including the subtle behavior associated with singularities 
(for instance, see [ 13] ). The partial compactification of moduli space that comes from 
the ADHM construction is actually the analog for ]I~ 4 of the compactification that has 

been (rather optimistically) used in testing S-duality of N = 4 super Yang-Mills theory 

for strong coupling [10]. 

3. Ins tanton  n u m b e r  one 

In this section, I will make this construction somewhat more explicit by describing 

precisely the instanton number one solution in this language. Of course, there is no 
essential novelty here; the formulas are well known in the ADHM literature. Writing 

them out here may nevertheless be useful. 
The basic one instanton solution arises for gauge group SU(2), but of course can be 

embedded in any larger gauge group. In the formulation above, the natural gauge group 
is SO(N). We will take N = 4 and use the embedding of SU(2) in SO(4) given by the 

decomposition SO(4) ~ SU(2) × SU(2). Thus, we identify the gauge group of the one 
instanton solution with one of the SU(2) 's  in SO(4); the second SU(2) - call it K - 
is a (rather trivial) global symmetry group of the solution. 

Now, let us consider the full symmetry group of the sigma model corresponding to 
this solution. Any (0,4)  sigma model of the type we are considering has a global 
symmetry group F '  ~ SU(2). In addition, the one instanton solution happens to be 
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invariant under rotations 4 of  N 4. The rotation group is SO(4)  ~ SU(2)L x SU(2)R. 

So altogether, the global  symmetry of  the (0, 4) s igma model that we are looking for 

is F ~ x K x SU(2)L  x SU(2)R ~ SU(2)  4. 

What  are the fields supposed to be? We want k = 1 to get I~ 4 as space-t ime,  and 

k' = 1 so that the instanton number will be one. There are therefore four X's, X AY, and 

four &'s, cA'Y'.  On the X's  and ¢ ' s  there is a natural action, noted in the last section, 

of  F x F '  x H x H ~ ~ SU(2)  4. It is tempting to try to identify F x F '  x H x H '  with 

the isomorphic group F ~ x K x SU(2)L x SU(2)R, and this indeed proves to be correct. 

Thus, while the general instanton-related (0, 4) model of  the previous section has only 

U symmetry, the one instanton solution (embedded as we have described in S O ( 4 ) )  

proves to have the full F x U x H x H ~ symmetry. 

To achieve this symmetry in the Lagrangian, one needs an appropriate action of  

F x F t x H x H '  on the left-moving fermions ,t+. The number n of  A+ components 

is 8 (so that N = n - 4U = 4) ,  and with a little experimentation (or  by comparing to 

the standard A D H M  description of  the basic instanton) one finds that the A+'s must be 

taken to transform as ( 1 / 2 ,  0, 0, 1 /2)  • (0, 0, 1/2, 1 /2) .  The A+ fields are thus naturally 
= rr' yt  a AY' A, Y~ 1 2 and a+ , Y, = 1,2, with the usual sort of  reality condition written as ..+ , 

/~AY' Y'Z'-  W' v.7 Y'Z'-  = e Z B e  A+BZ' ,  A+ = e ' L e  A+zz'. (3.1) 

Note that the total number of  components of  A+ is indeed 2 x 2 + 2 x 2 = 8. 

For this choice of  ,~+'s, the coupling tensor C~B, has two pieces, cAY'BB , and CYr'BB,. 

For these we make (up to inessential rescalings) the most general ansatz compatible  

with (2.22) and the symmetries:  

cFY'BB' = XBY ~/)B 'r' cAY'BB' ---- P .¢:A .l. ,Y' , ~ "  B~'B • ( 3 . 2 )  

Here p is a real number that will be interpreted as the instanton scale parameter. It is 

easy to verify the ADHM equations (2.24) .  One may readily compute from (2.21) that 

the potential is 

V = ½(X 2 + p 2 ) ¢ 2 ,  (3.3) 

where 

X 2 = eAB~=yzXAYx BZ, (/)2 = E A,B,Ey,z,q~A'Y'q~B'Z'. (3.4) 

The expected symmetry under F x F ~ x H x H t, which acts by independent rotations 

of  X and ¢ ,  is manifest in (3.3) .  
To extract the standard formula for the one instanton solution from these expressions, 

we simply need to write down the low energy action for the massless fermions. The 

following ansatz exhibits four massless modes of  A+: 

4 In field theory, the instanton solution is actually invariant in addition under certain conformal transformations 
of ll~ 4, but this depends on the conformal invariance of the self-dual Yang-Mills equations and is lost in string 
theory. 
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V/2X a r w '  aw '  = P(~+' AA T' _ r~+ ( 3 . 5 )  

With this ansatz, the free kinetic energy of  the A+'s (the first term in (2.8))  can be 

rewritten using the following formula: 

YY~ ,~ Ay ~ 
• '~+W'0-- ,~+ "t- A + A y ' O - , . +  

yy' I ' A B  ( X  AYtg_X BZ -~- X AZ tg_X BY) y, 
= (+ re, a -  ( +  - ( r r ,  X 2 + p2 (+ z (3.6) 

In the last term one sees the standard instanton gauge field. 

This completes what I will say about the classical sigma model describing the instan- 

ton. To obtain the stringy corrections to the solution, one must consider the renormal- 

ization group flow to a (presumed) (0, 4) conformal field theory in the infrared. This 

certainly entails integrating out the massive fields rather than simply setting them to 

zero. Whether in addition it is necessary to consider renormalization group flow of  the 

massless fields depends on whether the (0, 4) action that one gets by integrating out the 

massive fields is automatically conformally invariant. It has been argued that massless 

(0, 4) theories of  the general type under discussion here are automatically conformally 

i nvariant under some conditions [14] ,  but there are limitations on this argument [ 14,5 ]. 

I will only make two observations here about the renormalization group flow: 

(1) In integrating out the massive fields, the expansion parameter is easily seen to be 

1/(X2 + p2); thus perturbation theory is accurate for all X if p is large, and for large 

X even if p is small. 

(2) Despite being super-renormalizable, it appears that when formulated on a curved 

two-manifold, the theory has a one-loop logarithmic divergence proportional to the 

world-sheet curvature R, if minimally coupled to the world-sheet metric. It is conceivable 

that to avoid this, one should add an extra coupling, perhaps of  the form R~b 2, when 

working on a curved world-sheet. This would spoil the p = 0 symmetry between X and 
~b that is mentioned below. 

3.1. B e h a v i o r  f o r  p = 0 

It is interesting to ask what happens if p is small - in fact, for p ~ 0. This is the 

regime in which the deviations of  the stringy instanton from the field theoretic instanton 
should be large. In [4,5],  an interesting proposal was made for the structure of  the 

solution at p = 0: the low energy string-derived field equations were solved for arbitrary 

p, and it was seen that for p = 0 the solution develops a semi-infinite tube that joins to 

the rest of  space-time near X = 0. This picture is not guaranteed to be correct because 
it is based on solving low energy equations that are not valid near X = 0 when p = 0.5 

From the mean field theory developed in the present paper, one gets a somewhat different 

5 The picture is supported by the fact, noted in [5], that the semi-infinite tube does indeed correspond to an 
exact conformal field theory. (This is true for (0,4) as well as for the (4,4) case discussed more thoroughly 
in [5] .) However, one does not know if the tube is stable. 
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picture of  what happens at p = 0. (This picture is also not guaranteed to be correct 

since we do not have precise control on the renormalization group flow.) 

First o f  all, at p = 0, the massless fermions, in view of  the above formulas, are simply 
the aAr'. they are exactly decoupled from the other fields, so the gauge connection is 

zero. This statement agrees with the picture of  [4,5] concerning what happens to the 

gauge fields for p = 0. The space-time looks somewhat different, however. The structure 
of  the potential energy 

1 V = ~ (X 2 + p2)~b2 (3.7) 

indicates that what happens at p = 0 is that the theory develops a second branch of  

classical vacua: in addition to the usual branch, ~b = 0 with any X, one has a second 

branch, X = 0 with any ~b. Field theory is a good approximation for large X on the first 

branch, or for large 4~ on the second branch. Indeed, at p = 0 there is a Z2 symmetry 
that exchanges X and ~b (unless this is ruined by an R~b 2 term mentioned above). 

The two branches are two asymptotically fiat and empty space-times, connected by a 

"worm-hole" region near X = ~b = 0 where stringy effects are important. 

Or alternatively, it may be that under the renormalization group flow to the infrared, 

the two branches become disconnected. If  in renormalization group flow the two branches 

become infinitely far apart, each separated from X = ~b = 0 by a semi-infinite tube, then 

it might be that the picture of  [4,5] corresponds to the X branch. In any event, the 

meaning of  the ~b branch is rather mysterious. 
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